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Inhomogeneous Random Sequential Adsorption 
on a Lattice 
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we study idealized random sequential adsorption on a lattice, with adsorption 
probabilities inhomogeneous both in space and in time, and including the 
possibility of cooperativity. Attention is directed to the mean occupancy of a 
given site as a function of time, which is represented by a weighted random walk 
on the lattice. In the special case of nearest neighbor exclusion, the walk is 
transformed to one in which only neighbors of occupied sites can be occupied, 
but with a renormalized probability. Reduction theorems are presented, with 
which the general case of a tree lattice is completely solved in inverse form. 

KEY WORDS: Random sequential adsorption; irreversible kinetics' non- 
uniform lattice; simply connected network; inverse response. 

1. BASIC FORMULATION 

In this communication, we consider the process of random sequential 
adsorption or addition (RSA) on a lattice in a version that emphasizes 
inhomogeneity in space and time, and show how exact solutions for 
networks of low connectivity may be obtained. RSA models a large number 
of physical and chemical processes, which have been discussed extensively 
in the literature (see, e.g., ref. 1). 

The idealized form that we study is characterized by a particle flux 
fx(t) into site x at time t, with a sticking probability per incoming particle 
of 

Wx = exp ( - - ~  ~bx~n~) (1.1) 
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Here nz is the occupation, restricted to 0 or 1, of site z, and we will choose 
r = oo. The possibility of cooperative dependence on the environment of 
site x dates back to Hoffman. (2) Now, in time interval dt, the configuration 
of site x remains the same if nx = 1, remains the same with probability 
1-Wxfx(t)dt if nx=O, and transforms to nx=l with probability 
Wxf~(t) dt if nx = 0. We adopt a representation in which the site occupa- 
tions are given by 

10) = (10), ,l ) --= (~ )  (1.2) 

In terms of the occupation operator, "hole" occupation operator, and 
particle creation operator at x: 

n~=(O0 0 1 ) ,  ~x=(10 ~),  a+=( O' ~) (1.3) 

The site x transformation operator over interval dt is then given by 

J-~(t, dt)=(~ O1)+ fx(t)(O 100)wxdt+(10 ;) [l-fx(t)wxdt ] 

=l + J-x(t)dt (1.4) 

where(3, 4) 

~--~(t)=fx(t)(a+x -nx)Wx (1.5) 

Denoting the probability state vector of  the full lattice by IP(t)), we 
conclude that IP(t + dt) ) = LP(t) ) + ~,x Y-x ]P(t) ) dt, and hence that 

[P(t)) ~ J-x(t)IP(t)) (1.6) Ot x 

2. R A N D O M  W A L K  R E P R E S E N T A T I O N  

Suppose that initially, say at t = - 0 %  the lattice is empty: 
[ P ( - o o ) )  = L0), where 10) here is the unoccupied state of the full lattice. 
Then (1.6) can be solved in standard time-ordered exponential form 

ft J-~(t') dt' 1 [0 IP(t)) = TIexp ~ - ~  ) 

N = O  t ~ t l ~ , . . > ~ t N J = l  x 

(2.1) 
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Written as 
oo N 

IP(t)) = -. 
0 t>~t tN x I ' ' ' ' ' x N j = I  

this represents a weighted sum over walks Xl ..... XN on the lattice, taken for 
convenience as moving backward in time from t to -oo .  The sum can be 
substantially simplified. To do so, consider the typical term 

[1 ) - -  1 [ ( a ~ - f i x ) e x p ( - ~ z ~ b + z n z ) ] ] O  ) (2.3) 

and insert pairs of reciprocal exponentials to rewrite it as 

(i 1 )1 + ( )} ] I ) -  exp - ~  ~bxiznz ( ax j - f i~ )exp  s ~ l ~  O x i z n z i = l  

xexp - i =  

Since e - ~n(a + - ti) e ~" = e - ~a + - ~, and n [0) = 0, it follows that 

) I I ) =  11 ~ exp _ s  qkx,xJ a+-fixjxj 105 (2.5) 
i = 1  

But the Xl,..., XN need not be distinct. Suppose we denote the location 
of the first occurrence (in the order 1,..., N) of the j t h  distinct site by a(j), 
j = 1,..., d ~< N. Then, since 

(e-~a + - fi)(e-t3 a + -- fi) = - (e-~a + -- fi) (2.6) 

(2.5) is further reduced to 

} a+ -fix,(jl 10) (2.7) = ~ r x.<j> II) ( - -1 )  N-d  e x p -  
1 " = 1  

whose appropriate sum and integral then yields [P(t)). Of course, we 
are not concerned with the full probability distribution, but rather with 
significant expectations. In particular, the mean occupation of site x at time 
t is given by 

n~(t) = ~ ({n~}[ n x IP(t)) = (UI nx IP(t))  (2.8) 
{nz = 0, 1} 

where U represents the direct product of the row vectors 

lug) = (1, 1) (2.9) 
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Since (ul e ~a + - f i  1 0 ) = e  ~ - 1 ,  the j =  1 term in (2.7), inserted into 
(2.8), will be nonvanishing only if Xl=X, in which case 
(ul n(a + -f i)10)= 1. Hence, (2.7) applied to (2.2) via (1.5) yields the 
desired representation 

nx(t)= ~ f . . . f  ~ t~Xbx(--l)N--d~Ifx,(ti) 
N = I  t > ~ t l >  ~ . . .  >~tN ( X l ' " " X N }  1 

x 1-[ exp - Cx~x~ - 1 dtl...dtN (2.10) 
j = 2  

Note that in the case of a continuum of sites, where the probability of 
two sites on a walk coinciding goes to zero, (2.10) reduces simply to 

n(x, t) . . . . . . .  6(x l -x)  exp - r i, xj) - 1 
N = I  t>>-tl~ . . .  >~tN j = 2  

N 

x [I f(x,, tD dx,.., dXN dtl '"  dtu (2.11) 
1 

Equation (2.11) can be cast in a form similar to the equilibrium Mayer 
expansion by using 

I-IA~ - 1 =  Z I--[ (A~-  1)) (2.12) 

to rewrite (2.11) as (L s) 

N = I  t ~ t l > ~  ' ' '  >~tN 1 

x ~  1--I (e ~ (2.13) 
A ( i , j ) ~ . A  

where A denotes a subset of ordered pairs of indices (i,j), i<j<,N, for 
which each value of j occurs at least once. 

3. E X C L U S I O N  I N T E R A C T I O N  

Let us return to RSA on a lattice and confine our attention to 
strictly hard interactions, i.e., those for which Cxy= oe for x~g(y), the 
exclusion region of y, and otherwise ~bxy = 0; we will also assume that 
x e 8 ( y ) ~  y e 8(x). Now Eq. (2.10) simplifies considerably: each factor of 
I-IJ= z is either 0 or - 1 ,  and takes the latter value when x~(j) is in the 
exclusion region of some xi for i<j. Since every repeat of x~(i) will 



Random Sequential Adsorption 1205 

automatically be in the exclusion region of a previous site, (2.10) can then 
be rewritten, slightly redundantly, as 

nx(t)= ~ ( - 1 )  ~v-1 
N = I  

X l = X ,  x j ~ U i < j g ( x i )  N 

x f . . . f  ~ 1-~fx~(ti) dti"''dtu (3.1) 
t>>-tl>~ " "  >~tN { X l ' " " X N }  1 

Roughly speaking, the walk forward in time with exclusion is replaced by 
one which is backward in time but in which a landing must be made in 
some exclusion zone. This, together with the factor ( - 1 )  N-l, suggests 
some sort of inclusion-exclusion relation, and indeed may be derived on 
purely combinatorial grounds. (6) 

The fact that (3.1) does contain repeats suggests that something like 
(2.10), in which distinct sites are singled out, may be more appropriate. To 
make this more concrete, we observe that in the full sum (3.1), a first 
occurrence of y at t' will be followed by, say, s occurrences of y at t],..., t', 
which have no effect on the restrictions on succeeding members of the walk. 
Since t~ ..... t', can appear arbitrarily, subject only to t'>~ t'~ ... >i t',, fy(t') 
then appears only in the combination 

f f"  Fy(t')=fy(t') ( - 1 )  ~ ..- l-Ify(t'~)dt'l ...dr; 
s = O  t , > ~ t i > > . , , . > ~ t ,  s 1 

1 =fy(t') ( -  1)*/s! fy(z) dz 
s = O  o~ 

t '  

= fy(t ')  exp - f  fy(~) dz (3.2/ 
--oo 

of terms, repeated sites are no longer present, and With this amalgamation 
so (3.1) is transformed to (4) 

nx(t) = ~ ( - - 1 1  N - 1  

N = I  

X l = X ,  X j E U i < j g ( x i ) - U i < j x i  N 

t >1 t I ~ . . .  >1 t N { X l " ' " ' X N }  1 

It will also be useful to record the time derivative of nx(t), 

fix(t) = rx(t) ~ ( -  1)N 1 

N = I  
x j ~ U i < j ~ ( x i )  U i < j x i  N 

• f . . . f  l-[Fx,(ti) dt2...dtu (3.4) 
t > ~ t 2 >  ~ . . .  >~tN { X l ~ X ,  X2, . . . ,XN} 2 
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! 

Fig. 1. Lattice configuration with articulation point. 

Explicit evaluation of (3.3) depends very much upon the complexity of 
the lattice and the exclusion regions. Let us now suppose that only nearest 
neighbor sites are excluded (as well as the site itself). The simplest local 
form of a lattice is an articulation point, a site x whose excision cuts the 
lattice L into disconnected pieces A1, A2 ..... As: L = Ui At, A~n A j=  x for 
i S  j (Fig. 1). Consider fi~(t) (superscript denoting the lattice being referred 
to) under these circumstances. In any sequence X, Xz,...,xu, the sites 
belonging to A 1 can occur at arbi t rary--but  ordered--times, and similarly 
with A2, A3 ..... Thus the s subsequences occur independently in x, x2 ..... XN 
aside from the common root x at t. We conclude at once that (7) 

if L = U A t ,  where A i n A j = x  for i # j  
i 

then for nearest neighbor exclusion 

fz~(t)/rx(t) = 1-I [fi~'(t)/rx(t)] (3.5) 
i 

Equation (3.5) is particularly relevant to a lattice that is a tree, i.e., for 
which all sites are articulation points, but is of course not sufficient to solve 
for nx(t). For  this purpose, we need another reduction formula. Suppose 
that L is constructed by hanging another site x onto a site y ~ A (Fig. 2). 
Then any term in hx(t) starts with Fx(t), is necessarily followed by Fy(t2), 
and has no further restriction enforced by x. It follows at once that (7) 
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if L = A u ( x , y ) ,  where A n ( x , y ) = y  

then for nearest neighbor exclusion 

d (ri~(t)~ = _ rjyA(t) 
dt \Fx(t)J 

(3.6) 

We can now proceed to the solution of RSA on a tree, which will 
appear in the increasingly common inverse form: fx(t) as a functional of 
{ny(t)}. As a preliminary, we apply the preceding to the case of two 
neighboring articulation points x and y, roots of sublattices A and B 
(Fig. 3). Denote the complementary sublattice of A, together with the 
root x, as A, and similarly with B. Now, according to (3.5), we have 

Fx(t) h~(t) = hA(t) it~(t) (3.7a) 

Fy(t) ~y(t) = hBy(t) hny(t) (3.7b) 

and, according to (3.6), 

hBy(t) (3.8a) 
dt Fx(t) 

d hyB(t) ~ ( t )  (3.8b) 
dtFy(t) 

Combining (3.7b) and (3.8a) tells us (no superscript implies the full lattice) 
that 

h~(t) d h~(t)_ hx(t) (3.9) 
Fx(t) dt Fy(t) 

and similarly from (3.7a) and (3.8b), 

a 
Fy(t) dt Fx(t) by(t) (3.10) 

Y X 

Fig. 2. Lattice configuration with hanging bond. 
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Fig. 3. Lattice configuration with neighboring articulation points. 

From (3.9) and (3.10), 

d (hAx(t) hBy(t)~ _hx( t )_ f iy ( t  ) 
dt \Fx(t)  Fy(t)] = 

but hc(t)/Fx(t)-~ 1 as t ~  - ~  for any C~x,  so that 

i~(  t) h~y( t ) 
Fx(t) Fy(t) 1 - n~( t ) -  ny(t) 

Finally, dividing (3.10) by (3.12), we obtain 

by(t) F~(t) d h~(t) 
1 - nx(t) - ny(t) fiA(t) dt Fx(t) 

which integrates at once to the desired 

Fx(t) = e x p -  ~ 1 - n x ( z ) - n y ( Z )  dz 

t ~" I 1 

\ 
~4"13 

Fig. 4. Tree configuration with specified vertex. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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Now consider the point x on a tree, together with its neighbors x + u, 
u = ll, 12,... (Fig. 4). In obvious notation patterned after the above, we have 

= 

Fx(t) o F~(t) (3.15) 

and so, inserting the result (3.14) for each branch, conclude that 

f' hx+~(r) (3.16) F~(t)=hx(t)exp2 1 -nx(r)-nx+~(r) & 
f f  - - o o  

in the inverse form that was promised. 

4. D I S C U S S I O N  

Analysis of inhomogeneous RSA on simply connected lattices with 
nearest neighbor exclusion is, as we have seen, not difficult and not com- 
plicated. This suggests that more complex lattices which locally resemble 
such ideal cases can use them as effective references, and such preliminary 
investigations have been made. However, a deeper feeling for the structure 
of RSA on non-simply-connected lattices can best be achieved by exact 
solution of as many models as feasible, starting, e.g., with Husimi trees or 
cacti, r or perhaps with a few connected circuits. These studies will be 
reported in the near future. 

Returning briefly to the tree lattices that have been treated here, we  
may ask under what circumstances (3.16) can be cast in the more direct 
operational form: given the adsorption rates {f~(t)}, determine the den- 
sities, or coverages, {nx(t)} ? The simplest case of course is that in which 
the process is uniform on an infinite tree or Bethe lattice, of coordination 
number q. Then the subscript x can be dropped, and (3.16) reduces to 

f' f(t)=h(t)expq h(r)/[1 - 2n(r)] & 
- - o o  

= h(t)/[ 1 - 2n(t)] q/2 (4.1) 

From the definition (3.2), we can integrate (4.1) to obtain 

f' 1 - e x p -  f(~) & =  {[1 -2n(t)] (2-q)/2- 1 } / ( q -  2) (4.2) 
- - c o  

and hence solve as 

n ( t ) = � 8 9  { ( q - - I ) - -  ( q - - 2 ) e x p [ - - f ' o  ~ f(r)dzj~ll2/(2-q)'~)(4.3) 

822/71/5-6-24 
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which is a trivial general izat ion (with an obvious  renormal iza t ion  of t ime) 
of a previously derived result. (4' 9) 

Mat te rs  become potential ly more  interesting when some degree of 
nonuni formi ty  is present. Simplest  perhaps  is one which is locally bipartite:  
we divide the lattice into A and B sites so that  A has only B as a ne ighbor  
and  vice versa, and  allow f ~ ( t ) C f A ( t ) .  Then  (3.16) reduces to the pair  

FA(t )  = hA(t)  exp q _ ~ 1 -- nA(Z ) -- nn(z  ) 

(4.4) 
t hA(z) dr 

F s ( t )  = he ( t )  exp q _ oo 1 - nA(r)  -- riB(z) 

Let us adop t  the no ta t ion  

Sx( t )  = hx ( t ) /Fx( t )  (4.5) 

for the normal ized  response,  so that  S x ( - o o ) =  1. N o w  mult iplying the 
pair  (4.4) gives us 

SA( t )  SB( t )  = e x p - -  q [hA(r) + h~(T)] / [1  -- nA(~) -- nB(~)] & 
--oo 

o r  

SA( t )  SB( t )  = [1 -- nA(t  ) -- nB(t)  ] q (4.6) 

or  subst i tut ing back  into the derivatives of (4.4), 

SA( t )  = -- q F B ( t ) [ S a ( t )  SB(t)]  1 1/q 
(4.7) 

S~( t )  = - q F A ( t ) [ S A ( t )  S B ( t ) ]  1 - 1/q 

In  terms of 

R x ( t  ) = Sx ( t )  1/q ( 4 . 8 )  

these yield the relatively simple pair  

R A ( t  ) = _ F B ( t  ) R B ( t ) q -  1 
(4.9) 

R a ( t )  = -- FA( t )  R a ( t )  q -  1 

Although the solution of (4.9) is not  t ransparent ,  the line lattice case, 
q = 2, is relatively clear. In terms of (1 >~X~>0) 

X = f ~ F A ( z ) d z : e x p [ - f ' _  f A ( z )  d z ]  (4.10, 
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we have RA=FAFBRs, R~ RA, or 

R~(X) = G ( x )  F,~(X) RB(X) (4.11) 

which can be examined at leisure. But it seems clear from the foregoing 
that the inverse form is the approach of choice for inhomogeneous RSA. 
There remains the task of setting up thermodynamic generating functions 
to make this approach more compact, as in the customary equilibrium 
theory. Possible ways of doing so are now under study. 
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